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GMRES, Worst-case GMRES and Ideal GMRES

Ax = b , A ∈ Cn×n is nonsingular, b ∈ Cn ,

x0 = 0 and ‖b‖ = 1 for simplicity .
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GMRES, Worst-case GMRES and Ideal GMRES

Ax = b , A ∈ Cn×n is nonsingular, b ∈ Cn ,

x0 = 0 and ‖b‖ = 1 for simplicity .

GMRES computes xk ∈ Kk(A, b) such that rk ≡ b−Axk satisfies

‖rk‖ = min
p∈πk

‖p(A)b‖ (GMRES)

≤ max
‖b‖=1

min
p∈πk

‖p(A)b‖ ≡ ψk(A) (worst-case GMRES)

≤ min
p∈πk

‖p(A)‖ ≡ ϕk(A) (ideal GMRES) .
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Questions

‖rk‖ ≤ max
‖b‖=1

min
p∈πk

‖p(A)b‖

︸ ︷︷ ︸

ψk(A)

≤ min
p∈πk

‖p(A)‖
︸ ︷︷ ︸

ϕk(A)

Which (known) approximation problem is solved?

How to approximate ideal/worst-case quantities?

When does it hold that ideal = worst case GMRES?

Is the solution unique?
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Outline

1 Worst-case GMRES for normal matrices

2 Results for nonnormal matrices

3 Cross equality for worst-case GMRES vectors

4 Results for a Jordan block
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Worst-case GMRES for normal matrices

A = QΛQ∗, Q∗Q = I .

[Greenbaum & Gurvits ’94, Joubert ’94] showed:

max
‖b‖=1

min
p∈πk

‖p(A)b‖ = min
p∈πk

‖p(A)‖
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max
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p∈πk

‖p(A)b‖ = min
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Worst-case GMRES for normal matrices

A = QΛQ∗, Q∗Q = I .

[Greenbaum & Gurvits ’94, Joubert ’94] showed:

max
‖b‖=1

min
p∈πk

‖p(A)b‖ = min
p∈πk

‖p(A)‖

Which (known) approximation problem is solved?

min
p∈πk
‖p(A)‖ = min

p∈πk
‖Qp(Λ)Q∗‖ = min

p∈πk
max
λi
|p(λi)| .

Is the solution unique? Yes

How to approximate ideal/worst-case quantities?
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GMRES for normal matrices
Factorization of Krylov matrix

Krylov matrix:
Kk+1 ≡ [b,Ab, . . . ,Akb] .

We consider A and b in the form

A = QΛQH , b = Q [̺1, . . . , ̺n]
T .
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GMRES for normal matrices
Factorization of Krylov matrix

Krylov matrix:
Kk+1 ≡ [b,Ab, . . . ,Akb] .

We consider A and b in the form

A = QΛQH , b = Q [̺1, . . . , ̺n]
T .

Factorization:
Kk+1 = QDVk+1

where

D ≡






̺1

. . .

̺n




 , Vk+1 ≡






1 λ1 · · · λk1
...

...
...

1 λn · · · λkn




 .
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GMRES for normal matrices
GMRES residual norm

Residual rk can be written as [Liesen et al. ’02, Ipsen ’00]

rk = ‖rk‖
2 (K†k+1)H e1

= ‖rk‖
2 Q

[

(DVk+1)†
]H

e1 .
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GMRES for normal matrices
GMRES residual norm

Residual rk can be written as [Liesen et al. ’02, Ipsen ’00]

rk = ‖rk‖
2 (K†k+1)H e1

= ‖rk‖
2 Q

[

(DVk+1)†
]H

e1 .

and

‖rk‖ =
1

‖[(DVk+1)†]
H
e1‖

.

( Assumption: Kk+1 has full column rank )
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GMRES residual norm (next-to-last step)

Let ̺j 6= 0 for all j. Then [Liesen & T. ’04, Ipsen ’00]

‖rn−1‖ =
1

‖D−HV−Hn e1‖
=





n∑

j=1

∣
∣
∣
∣
∣

ℓj
̺j

∣
∣
∣
∣
∣

2




−1/2

,

where

ℓj ≡
n∏

i=1

i6=j

λi
λi − λj

.
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GMRES residual norm (next-to-last step)

Let ̺j 6= 0 for all j. Then [Liesen & T. ’04, Ipsen ’00]

‖rn−1‖ =
1

‖D−HV−Hn e1‖
=





n∑

j=1

∣
∣
∣
∣
∣

ℓj
̺j

∣
∣
∣
∣
∣

2




−1/2

,

where

ℓj ≡
n∏

i=1

i6=j

λi
λi − λj

.

Let ‖b‖ = 1. Using Cauchy’s inequality, [Liesen & T. ’04]

‖rwn−1‖ =
1
n∑

j=1
|ℓj |

= min
p∈πn−1

max
λi
|p(λi)| .
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Worst-case residual norm in a general step k

For each S ⊆ L = {λ1, . . . , λn} we denote

MS

k ≡ min
p∈πk

max
λj∈S

|p(λj)| .
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k ≡ min
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|ℓSj |




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, S ⊆ L, |S| = k + 1.

10



Worst-case residual norm in a general step k

For each S ⊆ L = {λ1, . . . , λn} we denote

MS

k ≡ min
p∈πk

max
λj∈S

|p(λj)| .

We want to determine the value ML

k = ‖rwk ‖.

We are able to determine

MS

k =





k+1∑

j=1

|ℓSj |





−1

, S ⊆ L, |S| = k + 1.

For each subset S ⊆ L it holds ML

k ≥ MS

k , i.e.

ML

k ≥ max
S⊆L
|S|=k+1

MS

k ≡ BLk .

lower bound
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Tightness of the bound
All eigenvalues are real

Approximation theory:

There exists a set S ⊆ L, |S| = k + 1 such that

min
p∈πk

max
λj∈S

|p(λj)|

︸ ︷︷ ︸

MS
k

= min
p∈πk

max
λj∈L

|p(λj)|

︸ ︷︷ ︸

ML
k

i.e.

‖rwk ‖ = ML

k = MS

k =
1

k+1∑

j=1

n∏

i=1

i6=j

|λS
i
|

|λS
i
−λS
j
|

= BLk .

[Liesen & T. ’04, Greenbaum ’79]
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Tightness of the bound
Complex eigenvalues

Approximation theory:

The smallest set S ⊆ L for which ML

k = MS

k might contain as
many as 2k + 1 distinct elements in the general complex case.

We proved that : [Liesen & T. ’04]

BLk ≤ ‖r
w

k ‖ ≤
√

(k + 1)(n− k) BLk .
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Tightness of the bound
Complex eigenvalues

Approximation theory:

The smallest set S ⊆ L for which ML

k = MS

k might contain as
many as 2k + 1 distinct elements in the general complex case.

We proved that : [Liesen & T. ’04]

BLk ≤ ‖r
w

k ‖ ≤
√

(k + 1)(n− k) BLk .

Moreover, we conjecture:

BLk ≤ ‖r
w

k ‖ ≤
4

π
BLk .
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Experiment 1: roots of unity

In this case the worst-case GMRES completely stagnates, i.e.

1 = ‖rwi ‖, i = 0, . . . , n− 1.
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We proved: ‖rwn−2‖ <
4
π B

L
n−2 , lim

n→∞

[
4
π B

L
n−2

]

= ‖rwn−2‖ .
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Experiment 2: random eigenvalues

Random eigenvalues in the region [0, 1] × i [0, 1]
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Interesting open problem
Approximation theory

Conjecture: Let L = {λ1, . . . , λn} be a set of n distinct points in
the complex plane. Then there exists a subset S ⊂ L containing
k + 1 points such that

min
p∈πk

max
λj∈S

|p(λj)|

︸ ︷︷ ︸

MS
k

≤ min
p∈πk

max
λj∈L

|p(λj)|

︸ ︷︷ ︸

ML
k

=‖rw
k
‖

≤
4

π
min
p∈πk

max
λj∈S

|p(λj)|

︸ ︷︷ ︸

MS
k

and MS

k can be evaluated as

MS

k =
1

k+1∑

j=1

n∏

i=1

i6=j

|λS
i
|

|λS
i
−λS
j
|

.
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Outline

1 Worst-case GMRES for normal matrices

2 Results for nonnormal matrices

3 Cross equality for worst-case GMRES vectors

4 Results for a Jordan block
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Toh’s example

Worst-case GMRES can be very different from ideal GMRES!

Consider the 4 by 4 matrix

A =








1 ǫ
−1 ǫ−1

1 ǫ
−1







, ǫ > 0 .

Then, for k = 3 ,

0
ǫ→0
←− ψk(A) < ϕk(A) =

4

5
.

[Toh ’97, another example in Faber et al. ’96]
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Results concerning ψk(A) and ϕk(A)

Theorem [Joubert ’94, Faber et al. ’96]

Let A ∈ Cn×n be a matrix with minimal polynomial degree d(A).
Then the following statements hold:

1 ψ0(A) = ϕ0(A) = 1 .
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for all k ≥ d(A) .
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Results concerning ψk(A) and ϕk(A)

Theorem [Joubert ’94, Faber et al. ’96]

Let A ∈ Cn×n be a matrix with minimal polynomial degree d(A).
Then the following statements hold:

1 ψ0(A) = ϕ0(A) = 1 .

2 ψk(A) and ϕk(A) are both nonincreasing in k .

3 0 < ψk(A) ≤ ϕk(A) for 0 < k < d(A) .

4 If A is nonsingular, then ψk(A) = ϕk(A) = 0
for all k ≥ d(A) .

5 If A is singular, then ψk(A) = ϕk(A) = 1
for all k ≥ 0 .
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Ideal GMRES polynomial and ideal GMRES matrix

Definition

The polynomial p∗ ∈ πk is called the kth ideal GMRES
polynomial of A ∈ Cn×n , if it satisfies

‖p∗(A)‖ = min
p∈πk

‖p(A)‖ .

We call the matrix p∗(A) the kth ideal GMRES matrix of A.

Existence and uniqueness of p∗ proved by

[Greenbaum & Trefethen ’94]
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Results concerning ψk(A) = ϕk(A)

When does it hold that

max
‖b‖=1

min
p∈πk

‖p(A)b‖

︸ ︷︷ ︸

ψk(A)

= min
p∈πk

‖p(A)‖
︸ ︷︷ ︸

ϕk(A)

?
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[Greenbaum & Gurvits ’94, Joubert ’94]:

if A is normal,

for k = 1,

if p∗(A) has a simple maximal singular value.
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Results concerning ψk(A) = ϕk(A)

When does it hold that

max
‖b‖=1

min
p∈πk

‖p(A)b‖

︸ ︷︷ ︸

ψk(A)

= min
p∈πk

‖p(A)‖
︸ ︷︷ ︸

ϕk(A)

?

[Greenbaum & Gurvits ’94, Joubert ’94]:

if A is normal,

for k = 1,

if p∗(A) has a simple maximal singular value.

[Faber et al. ’96]:

Let A be n by n triangular Toeplitz matrix. Then

max
‖b‖=1

min
p∈πk

‖p(A)b‖ = 1 ⇐⇒ min
p∈πk

‖p(A)‖ = 1 .
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Characterization of the situation ψk(A) = ϕk(A)

Let Σ(B) be the span of maximal right singular vectors of B.

Lemma [T & Liesen & Faber ’07, Faber et al. ’96]

Let A be nonsingular and 1 < k < d(A).

Then ψk(A) = ϕk(A) if and only if there exist a polynomial
q ∈ πk and a unit norm vector b ∈ Σ(q(A)), such that

q(A)b ⊥ AKk(A, b) .

If such q and b exist, then q = p∗.
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Characterization of the situation ψk(A) = ϕk(A)

Let Σ(B) be the span of maximal right singular vectors of B.

Lemma [T & Liesen & Faber ’07, Faber et al. ’96]

Let A be nonsingular and 1 < k < d(A).

Then ψk(A) = ϕk(A) if and only if there exist a polynomial
q ∈ πk and a unit norm vector b ∈ Σ(q(A)), such that

q(A)b ⊥ AKk(A, b) .

If such q and b exist, then q = p∗.

Consequence: If ψk(A) = ϕk(A) then the worst-case GMRES
polynomial is unique.
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Simple maximal singular value of p
∗
(A)

Lemma [Greenbaum & Gurvits ’94]

If p∗(A) has a simple max. singular value then ψk(A) = ϕk(A).

Is this situation frequent or rare for nonnormal matrices?
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Simple maximal singular value of p
∗
(A)

Lemma [Greenbaum & Gurvits ’94]

If p∗(A) has a simple max. singular value then ψk(A) = ϕk(A).

Is this situation frequent or rare for nonnormal matrices?

Normal case: A = QΛQ∗, Q∗Q = I

min
p∈πk
‖p(A)‖ = min

p∈πk
‖Qp(Λ)Q∗‖ = min

p∈πk
max
λi
|p(λi)| .

p∗(ξ) attains its maximum value on at least k + 1 eigenvalues, i.e.
the multiplicity of max. sing. value of p∗(A) is at least k + 1 .
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Multiplicity of the maximal singular value of p
∗
(Jλ)

computed using the software SDPT3 by Toh

Jordan block Jλ, λ = 1, n = 20.
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k-dimensional generalized field of values of A

Fk(A) ≡












v∗Av
...

v∗Akv




 ∈ C

k : v∗v = 1






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
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


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Theorem [Faber et al. ’96]

For a nonsingular matrix A ∈ Cn×n the following statements hold:

ψk(A) = 1 ⇐⇒ 0 ∈ Fk(A),

ϕk(A) = 1 ⇐⇒ 0 ∈ cvx[Fk(A) ].
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k-dimensional generalized field of values of A

Fk(A) ≡












v∗Av
...

v∗Akv




 ∈ C

k : v∗v = 1







Theorem [Faber et al. ’96]

For a nonsingular matrix A ∈ Cn×n the following statements hold:

ψk(A) = 1 ⇐⇒ 0 ∈ Fk(A),

ϕk(A) = 1 ⇐⇒ 0 ∈ cvx[Fk(A) ].

If Fk(A) is convex then

ψk(A) = 1 ⇐⇒ ϕk(A) = 1 .
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A possible connection

Using Fk(A), it is possible to define two sets

Gk(A) = {ξ ∈ C : 0 ∈ Fk(A− ξI)}

Hk(A) = {ξ ∈ C : 0 ∈ cvx[Fk(A− ξI) ]}.

[Nevanlinna ’93, Greenbaum ’02]
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Using Fk(A), it is possible to define two sets

Gk(A) = {ξ ∈ C : 0 ∈ Fk(A− ξI)}

Hk(A) = {ξ ∈ C : 0 ∈ cvx[Fk(A− ξI) ]}.

[Nevanlinna ’93, Greenbaum ’02]

Equivalent definitions:

Gk(A) = {ξ ∈ C : ∃b ∀p ∈ Pk |p(ξ)| ≤ ‖p(A)b‖ } ,

Hk(A) = {ξ ∈ C : ∀p ∈ Pk |p(ξ)| ≤ ‖p(A)‖ } ,

[Greenbaum ’02, T. ’??]

where Pk denotes the set of polynomials of degree k or less.

There might be a connection between convexity of Fk(A) and the
relation between ideal and worst-case GMRES.
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Open problem

When does it hold that

max
‖b‖=1

min
p∈πk

‖p(A)b‖

︸ ︷︷ ︸

ψk(A)

= min
p∈πk

‖p(A)‖
︸ ︷︷ ︸

ϕk(A)

?

In both known examples of matrices A such that
ψk(A) < ϕk(A), Fk(A) is not convex.
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In both known examples of matrices A such that
ψk(A) < ϕk(A), Fk(A) is not convex.

For k = 1, Fk(A) is always convex and ψk(A) = ϕk(A).

Is the convexity of Fk(A) sufficient?
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Uniqueness

Let A be a nonsingular matrix. Then the kth ideal GMRES
polynomial p∗ ∈ πk that solves the problem

min
p∈πk

‖p(A)‖

is unique.

[Greenbaum & Trefethen ’94]
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Corrected proof and generalization can be found in

[Liesen & T. ’09, accepted to SIMAX]

What can be said about a polynomial q∗ ∈ πk that solves

max
‖b‖=1

min
p∈πk

‖p(A)b‖ ?

If ψk(A) = ϕk(A) then q∗ is unique and q∗ = p∗.

If ψk(A) < ϕk(A) . . . uniqueness in an open problem.
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Estimating the ideal GMRES approximation

How to estimate the ideal GMRES approximation

min
p∈πk

‖p(A)‖ ?
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z∈Ω
|p(z)|.

If A is normal then Ω = L.

If A is nonnormal then there are several approaches:

Ω = ε-pseudospectrum of A, [Trefethen ’90]

Ω = polynomial num. hull of A. [Nevanlinna ’93, Greenbaum ’02]
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Polynomial numerical hull

Definition

Let A be n by n matrix. Polynomial numerical hull of degree k
is a set in the complex plane defined by

Hk(A) ≡ {z ∈ C : |p(z)| ≤ ‖p(A)‖ ∀ p ∈ Pk} ,

where Pk denotes the set of polynomials of degree k or less.
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Polynomial numerical hull

Definition

Let A be n by n matrix. Polynomial numerical hull of degree k
is a set in the complex plane defined by

Hk(A) ≡ {z ∈ C : |p(z)| ≤ ‖p(A)‖ ∀ p ∈ Pk} ,

where Pk denotes the set of polynomials of degree k or less.

The set Hk(A) provides a lower bound

min
p∈πk

max
z∈Hk

|p(z)| ≤ min
p∈πk
‖p(A)‖ .

[Greenbaum ’02]

How do these sets look like for classes of nonnormal matrices?
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Hk(Jλ) for a Jordan block Jλ

Hk(Jλ) is a circle around λ with a radius ̺k,n ,

1 > ̺1,n > · · · > ̺n−1,n ≥
1
2 ,

̺1,n and ̺n−1,n are known,

[Faber et al. ’03] ̺n−1,n

̺1,n = cos

(
π

n+ 1

)

.
λ ̺1,n

If n is even,

̺n−1,n is the positive root of

2̺n + ̺− 1 = 0 .

̺n−1,n ≥ 1−
log(2n)

n
.
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Quality of the bound based on Hk(Jλ)

Jordan block Jλ ∈ Rn×n, λ = 1.

For k ≤ n/2 it holds that

1

2
≤ min
p∈πk

max
z∈Hk

|p(z)| ≤ min
p∈πk
‖p(A)‖ ≤ 1 .

[T. & Liesen & Faber ’07]
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Quality of the bound based on Hk(Jλ)

Jordan block Jλ ∈ Rn×n, λ = 1.

For k ≤ n/2 it holds that

1

2
≤ min
p∈πk

max
z∈Hk

|p(z)| ≤ min
p∈πk
‖p(A)‖ ≤ 1 .

In later iterations, ideal GMRES converges slower that the
lower bound predicts. For k = n− 1 we have

1

2n
∼ min
p∈πk

max
z∈Hk

|p(z)| ≤ min
p∈πk
‖p(A)‖ ∼

1

1 + log(n)
.

[T. & Liesen & Faber ’07]
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Outline

1 Worst-case GMRES for normal matrices

2 Results for nonnormal matrices

3 Cross equality for worst-case GMRES vectors

4 Results for a Jordan block
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Worst-case GMRES

For a given k , there exists a right hand side bw such that

‖rwk ‖ = min
p∈πk

‖p(A)bw‖ = max
‖b‖=1

min
p∈πk

‖p(A)b‖

Theorem [Zavorin ’02, T. ’??]

Let A ∈ Cn×n be a nonsingular matrix. Then GMRES achieves
the same worst-case behavior for A and A∗ at every iteration.

Zavorin ’02 → only for diagonalizable matrices.

T. ’?? → for all nonsingular matrices.
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Proof (for simplicity we consider everything real)

A is a given matrix, b is a unit norm starting vector,

‖rk‖ = ‖pb(A)b‖ = min
p∈πk
‖p(A)b‖, rk ⊥ AKk(A, b).
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Since q ∈ πk is arbitrary, we can also choose q = qc,

ψk(A) = 〈bw, qc(A
T )c〉 ≤ ‖qc(A

T )c‖ ≤ ψk(A
T ).

Switch the role of A and AT to obtain the opposite inequality.
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Another results

Since we know that ψk(A) = ψk(A
T ) and

ψk(A) = 〈bw, qc(A
T )c〉 ≤ ‖qc(A

T )c‖ ≤ ψk(A
T ),

it holds that

〈bw, qc(A
T )c〉 = ‖qc(A

T )c‖.
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Another results

Since we know that ψk(A) = ψk(A
T ) and

ψk(A) = 〈bw, qc(A
T )c〉 ≤ ‖qc(A

T )c‖ ≤ ψk(A
T ),

it holds that

〈bw, qc(A
T )c〉 = ‖qc(A

T )c‖.

This is true iff

bw =
qc(A

T )c

‖qc(AT )c‖
.
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Cross equality for worst-case GMRES vectors

Given: A ∈ Cn×n, k

GMRES(A,bw)

bw 7−→ rwk c ≡
rw
k

‖rw
k
‖

c 7−→ sk

GMRES(A∗,c)

It holds that

‖sk‖ = ‖rwk ‖ = ψk(A), bw =
sk
‖sk‖

.

[Zavorin ’02, T. ’??]
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Results for a Jordan block Jλ

Consider an n× n Jordan block Jλ, λ ∈ C,

̺k,n . . . the radius of the polynomial numerical hull Hk(Jλ)

1

2
≤ ̺k,n < 1 .
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Consider an n× n Jordan block Jλ, λ ∈ C,

̺k,n . . . the radius of the polynomial numerical hull Hk(Jλ)

1

2
≤ ̺k,n < 1 .

ψk(Jλ) = ϕk(Jλ)

if |λ| ≤ ̺k,n , [Faber et al. ’03, Faber et al. ’96]

if |λ| ≥ ̺−1
k,n−k and k < n/2 ,

in steps k such that k divides n ,

in steps n− k such that k divides n and |λ| ≥ 1 .

[T. & Liesen & Faber ’07]
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Ideal GMRES approximation ϕk(Jλ)

|λ| ≤ ̺k,n ,
ϕk(Jλ) = 1.

[Faber et al. ’03, Faber et al. ’96]
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Ideal GMRES approximation ϕk(Jλ)

|λ| ≤ ̺k,n ,
ϕk(Jλ) = 1.

[Faber et al. ’03, Faber et al. ’96]

|λ| ≥ ̺−1
k,n−k and k < n/2 ,

ϕk(Jλ) = |λ|−k.

steps n− k such that k divides n and |λ| ≥ 1 ,

ϕn−k(Jλ) =
1

λn−k





n/k−1
∑

i=0

λ−2ki4−2i

(

2i

i

)2




−1

.

[T. & Liesen & Faber ’07]
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Radius of polynomial numerical hull for Jλ

Theorem

Let d be the greatest common divisor of n and k and define

ℓ =
k

d
, m =

n

d
.

Then

̺k,n = ̺
1/d
ℓ,m .
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Theorem

Let d be the greatest common divisor of n and k and define

ℓ =
k

d
, m =

n

d
.

Then

̺k,n = ̺
1/d
ℓ,m .

Consider k such that k divides n . Then

̺k,n =

[

cos

(
π

m+ 1

)] 1

k

, ̺n−k,n = ̺
1

k
m−1,m .

[T. & Liesen & Faber ’07]
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Conclusions

1 Ideal and worst-case GMRES for nonnormal matrices are not
well understood.

2 There might be a connection between the convexity of the
generalized field of values and the relation between ideal and
worst-case GMRES.

3 Worst-case GMRES achieves the same convergence behavior
for A and A∗. Worst-case GMRES vectors satisfy the cross
equality.

4 Based on numerical observation and theoretical results
we conjecture that ideal GMRES = worst-case GMRES
for a Jordan block.
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Thank you for your attention!

More details can be found at

http://www.cs.cas.cz/tichy

http://www.math.tu-berlin.de/˜liesen
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