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GMRES, Worst-case GMRES and Ideal GMRES

Az =b, A € C"™™" is nonsingular, b € C",

xo =0 and ||b]| =1 for simplicity .

GMRES computes xj, € K(A,b) such that rp, = b — Axy, satisfies

lrell = min [[p(A)D]] (GMRES)
PET
< max min [[p(A)b|| = r(A)  (worst-case GMRES)
[[oll=1 PETL
< min [[p(A)]| = ¢r(A) (ideal GMRES).
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el < max min f[p(A)b]] < min |lp(A)]
_'/_/

@ Which (known) approximation problem is solved?
@ How to approximate ideal/worst-case quantities?
@ When does it hold that ideal = worst case GMRES?

@ |s the solution unique?



@ Worst-case GMRES for normal matrices
© Results for nonnormal matrices
© Cross equality for worst-case GMRES vectors

© Results for a Jordan block
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Worst-case GMRES for normal matrices

A=QAQ", QQ=I.

@ [Greenbaum & Gurvits '94, Joubert '94] showed:

ax mi A)b|| = mi A
max min [[p(A)b] = min [lp(A)]

@ Which (known) approximation problem is solved?
in |p(A)| = min [|Qp(A)Q*|| = minmax [p(\;)|.
min [p(A)]| = min [|Qp(A)Q7[ = minmax [p(A;)]

@ |s the solution unique? Yes

@ How to approximate ideal/worst-case quantities?



GMRES for normal matrices

Factorization of Krylov matrix

Krylov matrix:
K,i1 = [b,Ab,..., ARD].

We consider A and b in the form

A - QAQH7 b = Q[Qlt"'ﬁgn]T'



GMRES for normal matrices

Factorization of Krylov matrix

Krylov matrix:
K,i1 = [b,Ab,..., ARD].

We consider A and b in the form
A = QAQH7 b = Q[Qlt"':gn]T-
Factorization:

Ki11=QDVyyy

where

D = ; Vi1 =
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Residual 7, can be written as [Liesen et al. '02, Ipsen '00]
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GMRES for normal matrices

GMRES residual norm

Residual 7, can be written as [Liesen et al. '02, Ipsen '00]

e o= lrll® (K )" e

Irell? @ [(OVie)!] e

and

1
IOV )T el

Il =

( Assumption: K1 has full column rank )



GMRES residual norm (next-to-last step)

Let 05 = 0 for all j. Then [Liesen & T. '04, Ipsen '00]
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GMRES residual norm (next-to-last step)

Let 05 = 0 for all j. Then [Liesen & T. '04, Ipsen '00]
9\ —1/2
1 | L
Thn— — - - )
Il = v e (; 0 )
where
n
)\.
5] = ! .
’ E )\z — )‘j
i#j
Let ||b]] = 1. Using Cauchy's inequality, [Liesen & T. '04]
Il = = i max [p(\)|
ol = = = min max |p(\;)].
PETH— i
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Worst-case residual norm in a general step k

For each S C L = {\1,..., A\, } we denote

M; = mi A -
¢ = painmax [p(d;)]
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Worst-case residual norm in a general step k

For each S C L = {\1,..., A\, } we denote

M;? = minmax |p(\;)].
£ = painmax Ip(A)]
@ We want to determine the value M} = |}
@ We are able to determine
k+1 -1
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Worst-case residual norm in a general step k

For each S C L = {\1,..., A\, } we denote

M; = mi A -
¢ = painmax [p(d;)]

@ We want to determine the value M} = |}
@ We are able to determine

k+1 -1
Mg = (Y11 . SCL, |S|=k+1

j=1
For each subset S C L it holds M} > M/, i.e.

M} > max M7 = Bj.
SCL
[S|=k+1
lower bound
10



Tightness of the bound

All eigenvalues are real

Approximation theory:

There exists a set S C L, |S| = k + 1 such that

Jin max [p(Aj)] = min max [p(A5)]
My M
i.e.
el = ME = MP = 1 _
7
2 Ly
i#£]

[Liesen & T. '04, Greenbaum '79]
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Tightness of the bound

Complex eigenvalues

Approximation theory:

The smallest set .S C L for which M} = M}’ might contain as
many as 2k + 1 distinct elements in the general complex case.

We proved that : [Liesen & T. '04]

Bi < rifll < /(E+1)(n—Fk) By
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Tightness of the bound

Complex eigenvalues

Approximation theory:

The smallest set .S C L for which M} = M}’ might contain as
many as 2k + 1 distinct elements in the general complex case.

We proved that : [Liesen & T. '04]

Bi < rifll < /(E+1)(n—Fk) By

Moreover, we conjecture:

4
BE < Il < - BE
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Experiment 1: roots of unity

In this case the worst-case GMRES completely stagnates, i.e.

10°
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10 ¢

10

Experiment 2: random eigenvalues

Random eigenvalues in the region [0,1] x i[0, 1]

-1

— worst-case GMRES
— lower bound
- - 4/mt* lower bound

1 3 5 7




Interesting open problem

Approximation theory

Conjecture: Let L = {A1,...,\,} be a set of n distinct points in
the complex plane. Then there exists a subset S C L containing
k + 1 points such that

4
min max [p(};)| < minmax |p(A;)] < — minmax |p(\;)]

PETE N\;€S PETE N\;EL T PETE A\;ES

My M= My

and M} can be evaluated as

kil lr_L[ ‘/\,q‘
S_\S

j=1 i=1 A3 )‘i‘
i#]
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© Results for nonnormal matrices
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el < max min f[p(A)b]] < min |lp(A)]
_'/_/

@ Which (known) approximation problem is solved?
@ How to approximate ideal/worst-case quantities?
@ When does it hold that ideal = worst-case GMRES?

@ |s the solution unique?
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Toh's example

Worst-case GMRES can be very different from ideal GMRES!

Consider the 4 by 4 matrix

1 €
. -1
A = e . €>0
1 €
-1
Then, for k£ =3,
0 =2 y(A) < @A) = 5

[Toh 97, another example in Faber et al. '96]

18



Results concerning 1 (A) and i (A)

Theorem [Joubert '94, Faber et al. '96]

Let A € C™*" be a matrix with minimal polynomial degree d(A).
Then the following statements hold:

Q Yo(A)=wo(A)=1.

19
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Results concerning 1 (A) and i (A)

Theorem [Joubert '94, Faber et al. '96]
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forall k> 0.
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Ideal GMRES polynomial and ideal GMRES matrix

Definition

The polynomial p, € 7 is called the kth ideal GMRES
polynomial of A € C™*™, if it satisfies

L(A)|| = mi Al
Ip-(A)]| = min [lp(A)]

We call the matrix p,(A) the kth ideal GMRES matrix of A.

Existence and uniqueness of p, proved by

[Greenbaum & Trefethen '94]

20



Results concerning ;. (A)

When does it hold that

ax i A)b|| = mir A)|?
e min lp(A)bll = min [[p(A)l]
N—

Vie(A) ©r(A)
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Results concerning ;. (A)

When does it hold that

s ain lp(A)Bll = min [p(A)]} 7

[Greenbaum & Gurvits '94, Joubert '94]:

o if A is normal,
o for k=1,
o if p.(A) has a simple maximal singular value.
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Results concerning ¢ (A) =

When does it hold that

s ain lp(A)Bll = min [p(A)]} 7

[Greenbaum & Gurvits '94, Joubert '94]:

o if A is normal,
o for k=1,
o if p.(A) has a simple maximal singular value.
[Faber et al. "96]:
Let A be n by n triangular Toeplitz matrix. Then
Ap||l=1 <= ir Al =1.
e ain [p(A)D]| min [[p(A)]
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Characterization of the situation ¥;(A) = pr(A)

Let ¥(B) be the span of maximal right singular vectors of B.

Lemma [T & Liesen & Faber '07, Faber et al. '96]

Let A be nonsingular and 1 < k < d(A).

Then 9 (A) = ¢r(A) if and only if there exist a polynomial
q € T, and a unit norm vector b € 3(g(A)), such that

q(A)b L AK,(A,Db).

If such ¢ and b exist, then g = p,.

22



Characterization of the situation ¥;(A) = pr(A)

Let ¥(B) be the span of maximal right singular vectors of B.

Lemma [T & Liesen & Faber '07, Faber et al. '96]

Let A be nonsingular and 1 < k < d(A).

Then 9 (A) = ¢r(A) if and only if there exist a polynomial
q € T, and a unit norm vector b € 3(g(A)), such that

q(A)b L AK,(A,Db).

If such ¢ and b exist, then g = p,.

Consequence: If ¥ (A) = ¢k (A) then the worst-case GMRES
polynomial is unique.

22



Simple maximal singular value of p.(A)

Lemma [Greenbaum & Gurvits '94]

If p.(A) has a simple max. singular value then 1 (A) = @i (A).

Is this situation frequent or rare for nonnormal matrices?
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Simple maximal singular value of p.(A)

Lemma [Greenbaum & Gurvits '94]

If p.(A) has a simple max. singular value then 1 (A) = @i (A).

Is this situation frequent or rare for nonnormal matrices?
Normal case: A = QAQ*, Q*"Q =1

min ||p(A)|| = min ||Qp(A)Q*|| = nunmax Ip(N)]| -
PETY PET Tk A

p.(§) attains its maximum value on at least k + 1 eigenvalues, i.e.
the multiplicity of max. sing. value of p,(A) is at least k + 1.

23



Multiplicity of the maximal singular value of p,(J,)

computed using the software SDPT3 by Toh

Jordan block Jy, A =1, n = 20.

Multiplicity of the maximal singular value of the kth ideal GMRES matrix

multiplicity of the maximal singular value

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

24



k-dimensional generalized field of values of A

v*Av
Fr(A) = : eCtvv=1
v Ay
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v*Av
Fr(A) = : eCtvv=1

Theorem [Faber et al. '96]

For a nonsingular matrix A € C™*" the following statements hold:
° Yr(A) =1 < 0¢€ F,(A),
@ pp(A)=1 < 0€cvx[F(A)].
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k-dimensional generalized field of values of A

v*Av
Fr(A) = : eCtvv=1

Theorem [Faber et al. '96]

For a nonsingular matrix A € C™*" the following statements hold:
° Yr(A) =1 < 0¢€ F,(A),
@ pp(A)=1 < 0€cvx[F(A)].

If Fj,(A) is convex then
Ye(A) =1 <=  ¢p(A)=1.

25



A possible connection

Using Fj(A), it is possible to define two sets

G(A) = {£€C : 0€ F(A— D)}
J(A) = {€€C : 0€cvx|Fu(A )]}

[Nevanlinna '93, Greenbaum '02]
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A possible connection

Using Fj(A), it is possible to define two sets
G.(A) = {€£€€C : 0 F,(A—-<&D)}
i (A) = {£€€C : 0€cvx|Fp(A—£D) ]}

[Nevanlinna '93, Greenbaum '02]

Equivalent definitions:

G(A) = {£€C : IYpeP p©)

| < lp
H(A) = {€€C: VpePg|pl)l < [p

[Greenbaum '02, T. '?7]

where Pp denotes the set of polynomials of degree k or less.
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A possible connection

Using Fj(A), it is possible to define two sets

G(A) = {£€C : 0€ F(A— D)}
J(A) = {€€C : 0€cvx|Fu(A )]}

[Nevanlinna '93, Greenbaum '02]
Equivalent definitions:

G(A) = {£€C : IbVYpeP |pl&) < |p
Ai(A) = {£€C: YpePylp©)] < |p
[Greenbaum '02, T. '?77]

where Pp denotes the set of polynomials of degree k or less.

There might be a connection between convexity of Fj.(A) and the
relation between ideal and worst-case GMRES.
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Open problem

When does it hold that

nax min ||p(A)b|| = min |[p(A)| ?
max min [[p(A)b] = min [[p(A)]
N———

Vie(A) ©r(A)

@ In both known examples of matrices A such that
Yr(A) < or(A), Fr(A) is not convex.
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Open problem

When does it hold that

nax min ||p(A)b|| = min ||p(A)] ?
max min [[p(A)b] = min [[p(A)]
N———

Vie(A) ©r(A)

@ In both known examples of matrices A such that
Yr(A) < or(A), Fr(A) is not convex.

@ For k=1, Fi,(A) is always convex and ¢;(A) = @i (A).

@ |s the convexity of Fi(A) sufficient?
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Uniqueness

Let A be a nonsingular matrix. Then the kth ideal GMRES
polynomial p, € m; that solves the problem

min [[p(A)]

is unique.

[Greenbaum & Trefethen '94]

28



Uniqueness

Let A be a nonsingular matrix. Then the kth ideal GMRES
polynomial p, € m; that solves the problem

min [[p(A)|
is unique.
[Greenbaum & Trefethen '94]

Corrected proof and generalization can be found in

[Liesen & T. '09, accepted to SIMAX]
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Uniqueness

Let A be a nonsingular matrix. Then the kth ideal GMRES
polynomial p, € m; that solves the problem

min [[p(A)]
is unique.
[Greenbaum & Trefethen '94]
Corrected proof and generalization can be found in
[Liesen & T. '09, accepted to SIMAX]
What can be said about a polynomial ¢, € 7 that solves

max mln Hp( )b|| ?
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Uniqueness

Let A be a nonsingular matrix. Then the kth ideal GMRES
polynomial p, € m; that solves the problem

i A
min [[p(A)]
is unique.
[Greenbaum & Trefethen '94]
Corrected proof and generalization can be found in
[Liesen & T. '09, accepted to SIMAX]
What can be said about a polynomial ¢, € 7 that solves
max min A)b||?
max min p(A)b]
o If Yr(A) = pr(A) then g, is unique and g, = p..
o If Yp(A) < ¢r(A) ... uniqueness in an open problem.

28
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How to estimate the ideal GMRES approximation

i ?
min [[p(A)]}
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How to estimate the ideal GMRES approximation

in [|p(A)| ?
min [jp(A)]

Try to determine sets ) C C associated with A such that

min [[p(A)]| ~ min max |p(z)].

o If A is normal then 2 = L.

@ If A is nonnormal then there are several approaches:

@ () = e-pseudospectrum of A, [Trefethen '90]
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Estimating the ideal GMRES approximation

How to estimate the ideal GMRES approximation

in ||[p(A)|| ?
min [jp(A)]

Try to determine sets ) C C associated with A such that
min [[p(A)]| ~ min max |p(z)].

pem

o If A is normal then 2 = L.

@ If A is nonnormal then there are several approaches:

@ () = e-pseudospectrum of A, [Trefethen '90]

@ () = polynomial num. hull of A. [Nevanlinna '93, Greenbaum '02]

29



Polynomial numerical hull

Definition
Let A be n by n matrix. Polynomial numerical hull of degree k
is a set in the complex plane defined by

Hi(A) = {z€C: |p(2)| < [p(A)|| VpePrt,

where P denotes the set of polynomials of degree k or less.

30



Polynomial numerical hull

Definition
Let A be n by n matrix. Polynomial numerical hull of degree k
is a set in the complex plane defined by

Hi(A) = {z€C: |p(2)| < [p(A)|| VpePrt,

where P denotes the set of polynomials of degree k or less.

The set J7,(A) provides a lower bound

; < min ||p(A)]|.
Inin max p(2)l < min [[p(A)]

[Greenbaum '02]
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Polynomial numerical hull

Definition
Let A be n by n matrix. Polynomial numerical hull of degree k
is a set in the complex plane defined by

Hi(A) = {z€C: |p(2)| < [p(A)|| VpePrt,

where P denotes the set of polynomials of degree k or less.

The set J7,(A) provides a lower bound

; < min ||p(A)]|.
Inin max p(2)l < min [[p(A)]

[Greenbaum '02]

How do these sets look like for classes of nonnormal matrices?
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. (Jy) for a Jordan block J)

F3,(J ) is a circle around A with a radius gk, ,
1> 0l,n > " > On—1m > %v

01,n and Q,_1, are known, /

[Faber et al. '03] On—1n /

u /
] gt

If n is even,
On—1,n is the positive root of

20" +o0—1 = 0.

_ log(2n) .

On—1n > 1
n

31



Quality of the bound based on 7.(J))

Jordan block Jy € R™*"™ X\ = 1.

@ For k < n/2 it holds that

1
— < 1 < 1 p < .
7 < minmaxp(z)] < minfp(A)] <1

[T. & Liesen & Faber '07]
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Quality of the bound based on 7.(J))

Jordan block Jy € R™*"™ X\ = 1.

@ For k < n/2 it holds that

1
— < 1 < 1 p < .
7 < minmaxp(z)] < minfp(A)] <1

@ In later iterations, ideal GMRES converges slower that the
lower bound predicts. For kK =n — 1 we have

1 1
— ~ i < mi A ~ —
on ~ pinmax[p(z)] < min{p(A)] ~ e

[T. & Liesen & Faber '07]
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© Cross equality for worst-case GMRES vectors
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Worst-case GMRES

For a given k, there exists a right hand side b such that

G

= mi A)b™|| = max min ||p(A)t
min |[p(A)b%]] s in Ip(A)D]

Theorem [Zavorin '02, T. '77]

Let A € C™ " be a nonsingular matrix. Then GMRES achieves
the same worst-case behavior for A and A* at every iteration.

@ Zavorin '02 — only for diagonalizable matrices.

@ T.'?7? — for all nonsingular matrices.
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Proof (for simplicity we consider everything real)

A is a given matrix, b is a unit norm starting vector,

Il = lpo(A)Bl = rin [p(AD], i L AKK(ALD).
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A is a given matrix, b is a unit norm starting vector,

Il = lpo(A)Bl = rin [p(AD], i L AKK(ALD).

Then, Vq € 7, it holds that

(a(A)b, i) = (b,ri) = (po(A)b, 11} = |r]|>.
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Proof (for simplicity we consider everything real)

A is a given matrix, b is a unit norm starting vector,

Il = lpo(A)Bl = rin [p(AD], i L AKK(ALD).

Then, Vq € 7, it holds that

(a(A)D, 1) = (bri) = (po(A)b, i) = [l |”.
Let b be a worst-case starting vector, ¢ = 77 /||r}’||, then

Ye(A) = ||| = (g(A)”, c) = (b, q(AT)e).
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Proof (for simplicity we consider everything real)

A is a given matrix, b is a unit norm starting vector,

Il = lpo(A)Bl = rin [p(AD], i L AKK(ALD).

Then, Vq € 7 it holds that

(a(A)b, i) = (b, i) = (py(A)D, i) = [Ire]|”.
Let b be a worst-case starting vector, ¢ = 77 /||r}’||, then

Ve(A) =[] = (a(A)b”, ) = (b, g(AT)e).
Since ¢ € m is arbitrary, we can also choose ¢ = ¢,

Up(A) = (0, qe(AT)c) < [lge(AT)e|| < v (AT).
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Proof (for simplicity we consider everything real)

A is a given matrix, b is a unit norm starting vector,
Irll = lIpo(A)b]l = min [[p(A)b]l, — re L AKL(A,b).

Then, Vq € 7 it holds that

(a(A)b, 1) = (byr) = (po(A)b, 1) = [ *.
Let b be a worst-case starting vector, ¢ = 77 /||r}’||, then

Ve(A) =[] = (a(A)b”, ) = (b, g(AT)e).
Since ¢ € m is arbitrary, we can also choose ¢ = ¢,

Vp(A) = (0, qe(AT)e) < [lge(AT)e|l < i (AT).

Switch the role of A and AT to obtain the opposite inequality.
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Another results

Since we know that ¢ (A) = 1, (AT) and

Ur(A) = (0", qe(AT)e) < [lge(AT)e|l < gr(AT),
it holds that

(b, ac(AT)e) = lac(AT)e].
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Another results

Since we know that ¢ (A) = 1, (AT) and

Ur(A) = (0", qe(AT)e) < [lge(AT)e|l < gr(AT),
it holds that

(b, (A" )c) = llge(AT)e].

This is true iff

bu; _ qC(AT)C
llac(AT)ell~
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Cross equality for worst-case GMRES vectors

Given: A € C"*" K

GMRES(A,b¥)

C = T‘}:f
= Ty

© - ®

GMRES(A* c)

It holds that

| Sk
skl = lIrill = ¥r(A), 0" = :
skl

[Zavorin '02, T. '77]
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© Results for a Jordan block
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Results for a Jordan block J,

Consider an n x n Jordan block Jy, A € C,

Okn - - the radius of the polynomial numerical hull 7 (J )

—_

§§Qk,n<1'
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Results for a Jordan block J,

Consider an n x n Jordan block Jy, A € C,

Okn - - the radius of the polynomial numerical hull 7 (J )

—_

5 S Ok.n < 1.
Vr(In) = wr(dN)
o if ‘)\‘ < Ok.n » [Faber et al. '03, Faber et al. '96]
o if [\| >0,L , and k< n/2,
@ in steps k such that k divides n,

@ in steps n — k such that k divides n and || >1.

[T. & Liesen & Faber '07]
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|deal GMRES approximation ¢y (J))

° |)‘| < Okmn »
er(Iy) = 1.

[Faber et al. '03, Faber et al. '96]

40



|deal GMRES approximation ¢y (J))

° |)‘| < Okmn »
er(Iy) = 1.

[Faber et al. '03, Faber et al. '96]

° |\ > Q,;}l_k and k < n/2,

op(Tn) = AR
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|deal GMRES approximation ¢y (J))

° |)‘| < Okmn »
er(Iy) = 1.

[Faber et al. '03, Faber et al. '96]

° |\ > Q,;}l_k and k < n/2,
or(Ix) = A7

@ steps n — k such that k divides n and |A\| > 1,

-1
1M (20
pn-k(IN) = % { D AT . :
1=0
[T. & Liesen & Faber '07]
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Radius of polynomial numerical hull for J,

Theorem
Let d be the greatest common divisor of n and £ and define

k n
{ = — m = —.

d’ d

Then
_1d
Qk,n - Qé”;n :
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Radius of polynomial numerical hull for J,

Theorem
Let d be the greatest common divisor of n and £ and define
k 1
W= 30 m= %
Then
_1/d
Qk,n - Qé”;n :

Consider k£ such that k& divides n. Then

Qk’” - o8 (T” + 1):| ’ Qnikﬂl’ - Q’n’?—17m :

[T. & Liesen & Faber '07]
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Conclusions

@ Ideal and worst-case GMRES for nonnormal matrices are not
well understood.
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© There might be a connection between the convexity of the
generalized field of values and the relation between ideal and
worst-case GMRES.
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Conclusions

@ Ideal and worst-case GMRES for nonnormal matrices are not
well understood.

© There might be a connection between the convexity of the

generalized field of values and the relation between ideal and
worst-case GMRES.

© Worst-case GMRES achieves the same convergence behavior
for A and A*. Worst-case GMRES vectors satisfy the cross
equality.
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Conclusions

o

]

Ideal and worst-case GMRES for nonnormal matrices are not
well understood.

There might be a connection between the convexity of the
generalized field of values and the relation between ideal and
worst-case GMRES.

Worst-case GMRES achieves the same convergence behavior
for A and A*. Worst-case GMRES vectors satisfy the cross
equality.

Based on numerical observation and theoretical results
we conjecture that ideal GMRES = worst-case GMRES

for a Jordan block.
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Thank you for your attention!

More details can be found at

http://www.cs.cas.cz/tichy
http://www.math.tu-berlin.de/ liesen
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