On Ideal and Worst-case GMRES

Petr Tichý
joint work with
Jörg Liesen and Vance Faber
Institute of Computer Science AS CR

May 15, 2009, Prague

GMRES, Worst-case GMRES and Ideal GMRES

$\mathbf{A} x=b, \mathbf{A} \in \mathbb{C}^{n \times n}$ is nonsingular, $b \in \mathbb{C}^{n}$, $x_{0}=\mathbf{0}$ and $\|b\|=1$ for simplicity.

GMRES, Worst-case GMRES and Ideal GMRES

$\mathbf{A} x=b, \mathbf{A} \in \mathbb{C}^{n \times n}$ is nonsingular, $b \in \mathbb{C}^{n}$, $x_{0}=\mathbf{0}$ and $\|b\|=1$ for simplicity.

GMRES computes $x_{k} \in \mathcal{K}_{k}(\mathbf{A}, b)$ such that $r_{k} \equiv b-\mathbf{A} x_{k}$ satisfies

$$
\begin{equation*}
\left\|r_{k}\right\|=\min _{p \in \pi_{k}}\|p(\mathbf{A}) b\| \tag{GMRES}
\end{equation*}
$$

GMRES, Worst-case GMRES and Ideal GMRES

$\mathbf{A} x=b, \mathbf{A} \in \mathbb{C}^{n \times n}$ is nonsingular, $b \in \mathbb{C}^{n}$,
$x_{0}=\mathbf{0}$ and $\|b\|=1$ for simplicity.

GMRES computes $x_{k} \in \mathcal{K}_{k}(\mathbf{A}, b)$ such that $r_{k} \equiv b-\mathbf{A} x_{k}$ satisfies

$$
\left\|r_{k}\right\|=\min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|
$$

$$
\leq \max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\| \equiv \psi_{k}(\mathbf{A}) \quad \text { (worst-case GMRES) }
$$

GMRES, Worst-case GMRES and Ideal GMRES

$\mathbf{A} x=b, \mathbf{A} \in \mathbb{C}^{n \times n}$ is nonsingular, $b \in \mathbb{C}^{n}$,
$x_{0}=\mathbf{0}$ and $\|b\|=1$ for simplicity.

GMRES computes $x_{k} \in \mathcal{K}_{k}(\mathbf{A}, b)$ such that $r_{k} \equiv b-\mathbf{A} x_{k}$ satisfies

$$
\begin{align*}
\left\|r_{k}\right\| & =\min _{p \in \pi_{k}}\|p(\mathbf{A}) b\| \tag{GMRES}\\
& \leq \max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\| \equiv \psi_{k}(\mathbf{A}) \\
& \leq \min _{p \in \pi_{k}}\|p(\mathbf{A})\| \equiv \varphi_{k}(\mathbf{A})
\end{align*}
$$

(worst-case GMRES)
(ideal GMRES).

Questions

$$
\left\|r_{k}\right\| \leq \underbrace{\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|}_{\psi_{k}(\mathbf{A})} \leq \underbrace{\min _{p \in \pi_{k}}\|p(\mathbf{A})\|}_{\varphi_{k}(\mathbf{A})}
$$

- Which (known) approximation problem is solved?
- How to approximate ideal/worst-case quantities?
- When does it hold that ideal = worst case GMRES?
- Is the solution unique?

Outline

(1) Worst-case GMRES for normal matrices
(2) Results for nonnormal matrices
(3) Cross equality for worst-case GMRES vectors
(4) Results for a Jordan block

Outline

(1) Worst-case GMRES for normal matrices

2 Results for nonnormal matrices
(3) Cross equality for worst-case GMRES vectors
(4) Results for a Jordan block

Worst-case GMRES for normal matrices

$$
\mathbf{A}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{*}, \quad \mathbf{Q}^{*} \mathbf{Q}=\mathbf{I} .
$$

- [Greenbaum \& Gurvits '94, Joubert '94] showed:

$$
\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|=\min _{p \in \pi_{k}}\|p(\mathbf{A})\|
$$

Worst-case GMRES for normal matrices

$$
\mathbf{A}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{*}, \quad \mathbf{Q}^{*} \mathbf{Q}=\mathbf{I} .
$$

- [Greenbaum \& Gurvits '94, Joubert '94] showed:

$$
\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|=\min _{p \in \pi_{k}}\|p(\mathbf{A})\|
$$

- Which (known) approximation problem is solved?

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\|=\min _{p \in \pi_{k}}\left\|\mathbf{Q} p(\mathbf{\Lambda}) \mathbf{Q}^{*}\right\|=\min _{p \in \pi_{k}} \max _{\lambda_{i}}\left|p\left(\lambda_{i}\right)\right|
$$

Worst-case GMRES for normal matrices

$$
\mathbf{A}=\mathbf{Q} \Lambda \mathbf{Q}^{*}, \quad \mathbf{Q}^{*} \mathbf{Q}=\mathbf{I}
$$

- [Greenbaum \& Gurvits '94, Joubert '94] showed:

$$
\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|=\min _{p \in \pi_{k}}\|p(\mathbf{A})\|
$$

- Which (known) approximation problem is solved?

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\|=\min _{p \in \pi_{k}}\left\|\mathbf{Q} p(\boldsymbol{\Lambda}) \mathbf{Q}^{*}\right\|=\min _{p \in \pi_{k}} \max _{\lambda_{i}}\left|p\left(\lambda_{i}\right)\right| .
$$

- Is the solution unique? Yes

Worst-case GMRES for normal matrices

$$
\mathbf{A}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{*}, \quad \mathbf{Q}^{*} \mathbf{Q}=\mathbf{I} .
$$

- [Greenbaum \& Gurvits '94, Joubert '94] showed:

$$
\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|=\min _{p \in \pi_{k}}\|p(\mathbf{A})\|
$$

- Which (known) approximation problem is solved?

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\|=\min _{p \in \pi_{k}}\left\|\mathbf{Q} p(\mathbf{\Lambda}) \mathbf{Q}^{*}\right\|=\min _{p \in \pi_{k}} \max _{\lambda_{i}}\left|p\left(\lambda_{i}\right)\right|
$$

- Is the solution unique? Yes
- How to approximate ideal/worst-case quantities?

GMRES for normal matrices

Factorization of Krylov matrix
Krylov matrix:

$$
\mathbf{K}_{k+1} \equiv\left[b, \mathbf{A} b, \ldots, \mathbf{A}^{k} b\right]
$$

We consider \mathbf{A} and b in the form

$$
\mathbf{A}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{H}, \quad b=\mathbf{Q}\left[\varrho_{1}, \ldots, \varrho_{n}\right]^{T}
$$

GMRES for normal matrices

Factorization of Krylov matrix

Krylov matrix:

$$
\mathbf{K}_{k+1} \equiv\left[b, \mathbf{A} b, \ldots, \mathbf{A}^{k} b\right] .
$$

We consider \mathbf{A} and b in the form

$$
\mathbf{A}=\mathbf{Q} \Lambda \mathbf{Q}^{H}, \quad b=\mathbf{Q}\left[\varrho_{1}, \ldots, \varrho_{n}\right]^{T} .
$$

Factorization:

$$
\mathbf{K}_{k+1}=\mathbf{Q D V}_{k+1}
$$

where

$$
\mathbf{D} \equiv\left[\begin{array}{ccc}
\varrho_{1} & & \\
& \ddots & \\
& & \varrho_{n}
\end{array}\right], \quad \mathbf{V}_{k+1} \equiv\left[\begin{array}{cccc}
1 & \lambda_{1} & \cdots & \lambda_{1}^{k} \\
\vdots & \vdots & & \vdots \\
1 & \lambda_{n} & \cdots & \lambda_{n}^{k}
\end{array}\right]
$$

GMRES for normal matrices

GMRES residual norm

Residual r_{k} can be written as

$$
\begin{aligned}
r_{k} & =\left\|r_{k}\right\|^{2}\left(\mathbf{K}_{k+1}^{\dagger}\right)^{H} e_{1} \\
& =\left\|r_{k}\right\|^{2} \mathbf{Q}\left[\left(\mathbf{D} \mathbf{V}_{k+1}\right)^{\dagger}\right]^{H} e_{1}
\end{aligned}
$$

GMRES for normal matrices

GMRES residual norm

Residual r_{k} can be written as

$$
\begin{aligned}
r_{k} & =\left\|r_{k}\right\|^{2}\left(\mathbf{K}_{k+1}^{\dagger}\right)^{H} e_{1} \\
& =\left\|r_{k}\right\|^{2} \mathbf{Q}\left[\left(\mathbf{D} \mathbf{V}_{k+1}\right)^{\dagger}\right]^{H} e_{1}
\end{aligned}
$$

and

$$
\left\|r_{k}\right\|=\frac{1}{\left\|\left[\left(\mathbf{D} \mathbf{V}_{k+1}\right)^{\dagger}\right]^{H} e_{1}\right\|}
$$

(Assumption: \mathbf{K}_{k+1} has full column rank)

GMRES residual norm (next-to-last step)

Let $\varrho_{j} \neq 0$ for all j. Then
[Liesen \& T. '04, Ipsen '00]

$$
\left\|r_{n-1}\right\|=\frac{1}{\left\|\mathbf{D}^{-H} \mathbf{V}_{n}^{-H} e_{1}\right\|}=\left(\sum_{j=1}^{n}\left|\frac{\ell_{j}}{\varrho_{j}}\right|^{2}\right)^{-1 / 2}
$$

where

$$
\ell_{j} \equiv \prod_{\substack{i=1 \\ i \neq j}}^{n} \frac{\lambda_{i}}{\lambda_{i}-\lambda_{j}}
$$

GMRES residual norm (next-to-last step)

Let $\varrho_{j} \neq 0$ for all j. Then

$$
\left\|r_{n-1}\right\|=\frac{1}{\left\|\mathbf{D}^{-H} \mathbf{V}_{n}^{-H} e_{1}\right\|}=\left(\sum_{j=1}^{n}\left|\frac{\ell_{j}}{\varrho_{j}}\right|^{2}\right)^{-1 / 2}
$$

where

$$
\ell_{j} \equiv \prod_{\substack{i=1 \\ i \neq j}}^{n} \frac{\lambda_{i}}{\lambda_{i}-\lambda_{j}}
$$

Let $\|b\|=1$. Using Cauchy's inequality,

$$
\left\|r_{n-1}^{w}\right\|=\frac{1}{\sum_{j=1}^{n}\left|\ell_{j}\right|}=\min _{p \in \pi_{n-1}} \max _{\lambda_{i}}\left|p\left(\lambda_{i}\right)\right|
$$

Worst-case residual norm in a general step k

For each $S \subseteq L=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ we denote

$$
M_{k}^{S} \equiv \min _{p \in \pi_{k} \lambda_{j} \in S} \max \left|p\left(\lambda_{j}\right)\right| .
$$

Worst-case residual norm in a general step k

For each $S \subseteq L=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ we denote

$$
M_{k}^{S} \equiv \min _{p \in \pi_{k} \lambda_{j} \in S} \max \left|p\left(\lambda_{j}\right)\right| .
$$

- We want to determine the value $M_{k}^{L}=\left\|r_{k}^{w}\right\|$.

Worst-case residual norm in a general step k

For each $S \subseteq L=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ we denote

$$
M_{k}^{S} \equiv \min _{p \in \pi_{k} \lambda_{j} \in S} \max \left|p\left(\lambda_{j}\right)\right|
$$

- We want to determine the value $M_{k}^{L}=\left\|r_{k}^{w}\right\|$.
- We are able to determine

$$
M_{k}^{S}=\left(\sum_{j=1}^{k+1}\left|\ell_{j}^{S}\right|\right)^{-1}, \quad S \subseteq L, \quad|S|=k+1
$$

Worst-case residual norm in a general step k

For each $S \subseteq L=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ we denote

$$
M_{k}^{S} \equiv \min _{p \in \pi_{k} \lambda_{j} \in S} \max \left|p\left(\lambda_{j}\right)\right|
$$

- We want to determine the value $M_{k}^{L}=\left\|r_{k}^{w}\right\|$.
- We are able to determine

$$
M_{k}^{S}=\left(\sum_{j=1}^{k+1}\left|\ell_{j}^{S}\right|\right)^{-1}, \quad S \subseteq L, \quad|S|=k+1
$$

For each subset $S \subseteq L$ it holds $M_{k}^{L} \geq M_{k}^{S}$, i.e.

$$
M_{k}^{L} \geq \max _{\substack{S \subseteq L \\|S|=k+1}} M_{k}^{S} \equiv B_{k}^{L}
$$

Tightness of the bound

All eigenvalues are real

Approximation theory:
There exists a set $S \subseteq L,|S|=k+1$ such that

$$
\underbrace{\min _{p \in \pi_{k} \lambda_{j} \in S} \max \left|p\left(\lambda_{j}\right)\right|}_{M_{k}^{S}}=\underbrace{\min _{p \in \pi_{k} \lambda_{j} \in L} \max \left|p\left(\lambda_{j}\right)\right|}_{M_{k}^{L}}
$$

i.e.

$$
\left\|r_{k}^{w}\right\|=M_{k}^{L}=M_{k}^{S}=\frac{1}{\sum_{j=1}^{k+1} \prod_{\substack{i=1 \\ i \neq j}}^{n} \frac{\left|\lambda_{i}^{S}\right|}{\left|\lambda_{i}^{S}-\lambda_{j}^{S}\right|}}=B_{k}^{L}
$$

[Liesen \& T. '04, Greenbaum '79]

Tightness of the bound

Complex eigenvalues

Approximation theory:
The smallest set $S \subseteq L$ for which $M_{k}^{L}=M_{k}^{S}$ might contain as many as $2 k+1$ distinct elements in the general complex case.

We proved that :

$$
B_{k}^{L} \leq\left\|r_{k}^{w}\right\| \leq \sqrt{(k+1)(n-k)} B_{k}^{L}
$$

Tightness of the bound

Complex eigenvalues

Approximation theory:
The smallest set $S \subseteq L$ for which $M_{k}^{L}=M_{k}^{S}$ might contain as many as $2 k+1$ distinct elements in the general complex case.

We proved that :

$$
B_{k}^{L} \leq\left\|r_{k}^{w}\right\| \leq \sqrt{(k+1)(n-k)} B_{k}^{L}
$$

Moreover, we conjecture:

$$
B_{k}^{L} \leq\left\|r_{k}^{w}\right\| \leq \frac{4}{\pi} B_{k}^{L}
$$

Experiment 1: roots of unity

In this case the worst-case GMRES completely stagnates, i.e.

$$
1=\left\|r_{i}^{w}\right\|, \quad i=0, \ldots, n-1
$$

We proved: $\quad\left\|r_{n-2}^{w}\right\|<\frac{4}{\pi} B_{n-2}^{L}, \quad \lim _{n \rightarrow \infty}\left[\frac{4}{\pi} B_{n-2}^{L}\right]=\left\|r_{n-2}^{w}\right\|$.

Experiment 2: random eigenvalues

Random eigenvalues in the region $[0,1] \times \mathbf{i}[0,1]$

Interesting open problem

Approximation theory

Conjecture: Let $L=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a set of n distinct points in the complex plane. Then there exists a subset $S \subset L$ containing $k+1$ points such that

$$
\underbrace{\min _{p \in \pi_{k} \lambda_{j} \in S} \max \left|p\left(\lambda_{j}\right)\right|}_{M_{k}^{S}} \leq \underbrace{\min _{p \in \pi_{k} \lambda_{j} \in L}\left|p\left(\lambda_{j}\right)\right|}_{M_{k}^{L}=\left\|r_{k}^{w}\right\|} \leq \frac{4}{\pi} \underbrace{\min _{p \in \pi_{k}} \max _{j} \in S}_{M_{k}^{S}}\left|p\left(\lambda_{j}\right)\right|
$$

and M_{k}^{S} can be evaluated as

$$
M_{k}^{S}=\frac{1}{\sum_{j=1}^{k+1} \prod_{\substack{i=1 \\ i \neq j}}^{n} \frac{\left|\lambda_{i}^{S}\right|}{\left|\lambda_{i}^{S}-\lambda_{j}^{S}\right|}} .
$$

Outline

(1) Worst-case GMRES for normal matrices

(2) Results for nonnormal matrices
(3) Cross equality for worst-case GMRES vectors

4 Results for a Jordan block

Questions

$$
\left\|r_{k}\right\| \leq \underbrace{\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|}_{\psi_{k}(\mathbf{A})} \leq \underbrace{\min _{p \in \pi_{k}}\|p(\mathbf{A})\|}_{\varphi_{k}(\mathbf{A})}
$$

- Which (known) approximation problem is solved?
- How to approximate ideal/worst-case quantities?
- When does it hold that ideal = worst-case GMRES?
- Is the solution unique?

Toh's example

Worst-case GMRES can be very different from ideal GMRES!
Consider the 4 by 4 matrix

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & \epsilon & & \\
& -1 & \epsilon^{-1} & \\
& & 1 & \epsilon \\
& & & -1
\end{array}\right], \quad \epsilon>0
$$

Then, for $k=3$,

$$
0 \stackrel{\epsilon \rightarrow 0}{\rightleftarrows} \psi_{k}(\mathbf{A})<\varphi_{k}(\mathbf{A})=\frac{4}{5} .
$$

[Toh '97, another example in Faber et al. '96]

Results concerning $\psi_{k}(\mathbf{A})$ and $\varphi_{k}(\mathbf{A})$

Theorem

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a matrix with minimal polynomial degree $d(\mathbf{A})$. Then the following statements hold:
(1) $\psi_{0}(\mathbf{A})=\varphi_{0}(\mathbf{A})=1$.

Results concerning $\psi_{k}(\mathbf{A})$ and $\varphi_{k}(\mathbf{A})$

Theorem

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a matrix with minimal polynomial degree $d(\mathbf{A})$. Then the following statements hold:
(1) $\psi_{0}(\mathbf{A})=\varphi_{0}(\mathbf{A})=1$.
(2) $\psi_{k}(\mathbf{A})$ and $\varphi_{k}(\mathbf{A})$ are both nonincreasing in k.

Results concerning $\psi_{k}(\mathbf{A})$ and $\varphi_{k}(\mathbf{A})$

Theorem

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a matrix with minimal polynomial degree $d(\mathbf{A})$. Then the following statements hold:
(1) $\psi_{0}(\mathbf{A})=\varphi_{0}(\mathbf{A})=1$.
(2) $\psi_{k}(\mathbf{A})$ and $\varphi_{k}(\mathbf{A})$ are both nonincreasing in k.
(3) $0<\psi_{k}(\mathbf{A}) \leq \varphi_{k}(\mathbf{A})$ for $0<k<d(\mathbf{A})$.

Results concerning $\psi_{k}(\mathbf{A})$ and $\varphi_{k}(\mathbf{A})$

Theorem

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a matrix with minimal polynomial degree $d(\mathbf{A})$. Then the following statements hold:
(1) $\psi_{0}(\mathbf{A})=\varphi_{0}(\mathbf{A})=1$.
(2) $\psi_{k}(\mathbf{A})$ and $\varphi_{k}(\mathbf{A})$ are both nonincreasing in k.
(3) $0<\psi_{k}(\mathbf{A}) \leq \varphi_{k}(\mathbf{A})$ for $0<k<d(\mathbf{A})$.
(3) If \mathbf{A} is nonsingular, then $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})=0$ for all $k \geq d(\mathbf{A})$.

Results concerning $\psi_{k}(\mathbf{A})$ and $\varphi_{k}(\mathbf{A})$

Theorem
Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a matrix with minimal polynomial degree $d(\mathbf{A})$. Then the following statements hold:
(1) $\psi_{0}(\mathbf{A})=\varphi_{0}(\mathbf{A})=1$.
(2) $\psi_{k}(\mathbf{A})$ and $\varphi_{k}(\mathbf{A})$ are both nonincreasing in k.
(3) $0<\psi_{k}(\mathbf{A}) \leq \varphi_{k}(\mathbf{A})$ for $0<k<d(\mathbf{A})$.
(9) If \mathbf{A} is nonsingular, then $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})=0$ for all $k \geq d(\mathbf{A})$.
(5) If \mathbf{A} is singular, then $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})=1$ for all $k \geq 0$.

Ideal GMRES polynomial and ideal GMRES matrix

Definition

The polynomial $p_{*} \in \pi_{k}$ is called the k th ideal GMRES polynomial of $\mathbf{A} \in \mathbb{C}^{n \times n}$, if it satisfies

$$
\left\|p_{*}(\mathbf{A})\right\|=\min _{p \in \pi_{k}}\|p(\mathbf{A})\| .
$$

We call the matrix $p_{*}(\mathbf{A})$ the k th ideal GMRES matrix of \mathbf{A}.

Existence and uniqueness of p_{*} proved by
[Greenbaum \& Trefethen '94]

Results concerning $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})$

When does it hold that

$$
\underbrace{\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|}_{\psi_{k}(\mathbf{A})}=\underbrace{\min _{p \in \pi_{k}}\|p(\mathbf{A})\|}_{\varphi_{k}(\mathbf{A})} \text { ? }
$$

Results concerning $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})$

When does it hold that

$$
\underbrace{\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|}_{\psi_{k}(\mathbf{A})}=\underbrace{\min _{p \in \pi_{k}}\|p(\mathbf{A})\|}_{\varphi_{k}(\mathbf{A})} \text { ? }
$$

[Greenbaum \& Gurvits '94, Joubert '94]:

- if \mathbf{A} is normal,
- for $k=1$,
- if $p_{*}(\mathbf{A})$ has a simple maximal singular value.

Results concerning $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})$

When does it hold that

$$
\underbrace{\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|}_{\psi_{k}(\mathbf{A})}=\underbrace{\min _{p \in \pi_{k}}\|p(\mathbf{A})\|}_{\varphi_{k}(\mathbf{A})} ?
$$

[Greenbaum \& Gurvits '94, Joubert '94]:

- if \mathbf{A} is normal,
- for $k=1$,
- if $p_{*}(\mathbf{A})$ has a simple maximal singular value.
[Faber et al. '96]:
Let \mathbf{A} be n by n triangular Toeplitz matrix. Then

$$
\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|=1 \Longleftrightarrow \min _{p \in \pi_{k}}\|p(\mathbf{A})\|=1
$$

Characterization of the situation $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})$

Let $\Sigma(\mathbf{B})$ be the span of maximal right singular vectors of \mathbf{B}.

Lemma

[\mathbf{T} \& Liesen \& Faber '07, Faber et al. '96]
Let \mathbf{A} be nonsingular and $1<k<d(\mathbf{A})$.
Then $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})$ if and only if there exist a polynomial $q \in \pi_{k}$ and a unit norm vector $b \in \Sigma(q(\mathbf{A}))$, such that

$$
q(\mathbf{A}) b \perp \mathbf{A} \mathcal{K}_{k}(\mathbf{A}, b) .
$$

If such q and b exist, then $q=p_{*}$.

Characterization of the situation $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})$

Let $\Sigma(\mathbf{B})$ be the span of maximal right singular vectors of \mathbf{B}.

Lemma [T \& Liesen \& Faber '07, Faber et al. '96]
Let \mathbf{A} be nonsingular and $1<k<d(\mathbf{A})$.
Then $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})$ if and only if there exist a polynomial $q \in \pi_{k}$ and a unit norm vector $b \in \Sigma(q(\mathbf{A}))$, such that

$$
q(\mathbf{A}) b \perp \mathbf{A} \mathcal{K}_{k}(\mathbf{A}, b) .
$$

If such q and b exist, then $q=p_{*}$.

Consequence: If $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})$ then the worst-case GMRES polynomial is unique.

Simple maximal singular value of $p_{*}(\mathbf{A})$

Lemma
[Greenbaum \& Gurvits '94]
If $p_{*}(\mathbf{A})$ has a simple max. singular value then $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})$.

Is this situation frequent or rare for nonnormal matrices?

Simple maximal singular value of $p_{*}(\mathbf{A})$

Lemma
[Greenbaum \& Gurvits '94]
If $p_{*}(\mathbf{A})$ has a simple max. singular value then $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})$.

Is this situation frequent or rare for nonnormal matrices?
Normal case: $\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{*}, \mathbf{Q}^{*} \mathbf{Q}=\mathbf{I}$

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\|=\min _{p \in \pi_{k}}\left\|\mathbf{Q} p(\boldsymbol{\Lambda}) \mathbf{Q}^{*}\right\|=\min _{p \in \pi_{k}} \max _{\lambda_{i}}\left|p\left(\lambda_{i}\right)\right| .
$$

$p_{*}(\xi)$ attains its maximum value on at least $k+1$ eigenvalues, i.e. the multiplicity of max. sing. value of $p_{*}(\mathbf{A})$ is at least $k+1$.

Multiplicity of the maximal singular value of $p_{*}\left(\mathbf{J}_{\lambda}\right)$

 computed using the software SDPT3 by TohJordan block $\mathbf{J}_{\lambda}, \lambda=1, n=20$.
Multiplicity of the maximal singular value of the kth ideal GMRES matrix

k-dimensional generalized field of values of A

$$
F_{k}(\mathbf{A}) \equiv\left\{\left(\begin{array}{c}
v^{*} \mathbf{A} v \\
\vdots \\
v^{*} \mathbf{A}^{k} v
\end{array}\right) \in \mathbb{C}^{k}: v^{*} v=1\right\}
$$

k-dimensional generalized field of values of A

$$
F_{k}(\mathbf{A}) \equiv\left\{\left(\begin{array}{c}
v^{*} \mathbf{A} v \\
\vdots \\
v^{*} \mathbf{A}^{k} v
\end{array}\right) \in \mathbb{C}^{k}: v^{*} v=1\right\}
$$

Theorem

For a nonsingular matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ the following statements hold:

- $\psi_{k}(\mathbf{A})=1 \Longleftrightarrow \mathbf{0} \in F_{k}(\mathbf{A})$,
- $\varphi_{k}(\mathbf{A})=1 \Longleftrightarrow \mathbf{0} \in \operatorname{cvx}\left[F_{k}(\mathbf{A})\right]$.

k-dimensional generalized field of values of A

$$
F_{k}(\mathbf{A}) \equiv\left\{\left(\begin{array}{c}
v^{*} \mathbf{A} v \\
\vdots \\
v^{*} \mathbf{A}^{k} v
\end{array}\right) \in \mathbb{C}^{k}: v^{*} v=1\right\}
$$

Theorem
For a nonsingular matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ the following statements hold:

- $\psi_{k}(\mathbf{A})=1 \Longleftrightarrow \mathbf{0} \in F_{k}(\mathbf{A})$,
- $\varphi_{k}(\mathbf{A})=1 \Longleftrightarrow \mathbf{0} \in \operatorname{cvx}\left[F_{k}(\mathbf{A})\right]$.

If $F_{k}(\mathbf{A})$ is convex then

$$
\psi_{k}(\mathbf{A})=1 \quad \Longleftrightarrow \quad \varphi_{k}(\mathbf{A})=1
$$

A possible connection

Using $F_{k}(\mathbf{A})$, it is possible to define two sets

$$
\begin{aligned}
\mathscr{G}_{k}(\mathbf{A}) & =\left\{\xi \in \mathbb{C}: \mathbf{0} \in F_{k}(\mathbf{A}-\xi \mathbf{I})\right\} \\
\mathscr{H}_{k}(\mathbf{A}) & =\left\{\xi \in \mathbb{C}: \mathbf{0} \in \operatorname{cvx}\left[F_{k}(\mathbf{A}-\xi \mathbf{I})\right]\right\}
\end{aligned}
$$

[Nevanlinna '93, Greenbaum '02]

A possible connection

Using $F_{k}(\mathbf{A})$, it is possible to define two sets

$$
\begin{aligned}
\mathscr{G}_{k}(\mathbf{A}) & =\left\{\xi \in \mathbb{C}: \mathbf{0} \in F_{k}(\mathbf{A}-\xi \mathbf{I})\right\} \\
\mathscr{H}_{k}(\mathbf{A}) & =\left\{\xi \in \mathbb{C}: \mathbf{0} \in \operatorname{cvx}\left[F_{k}(\mathbf{A}-\xi \mathbf{I})\right]\right\}
\end{aligned}
$$

[Nevanlinna '93, Greenbaum '02]
Equivalent definitions:

$$
\begin{aligned}
\mathscr{G}_{k}(\mathbf{A}) & =\left\{\xi \in \mathbb{C}: \exists b \forall p \in \mathcal{P}_{k}|p(\xi)| \leq\|p(\mathbf{A}) b\|\right\} \\
\mathscr{H}_{k}(\mathbf{A}) & =\left\{\xi \in \mathbb{C}: \quad \forall p \in \mathcal{P}_{k}|p(\xi)| \leq\|p(\mathbf{A})\|\right\}
\end{aligned}
$$

[Greenbaum '02, T. '??]
where \mathcal{P}_{k} denotes the set of polynomials of degree k or less.

A possible connection

Using $F_{k}(\mathbf{A})$, it is possible to define two sets

$$
\begin{aligned}
\mathscr{G}_{k}(\mathbf{A}) & =\left\{\xi \in \mathbb{C}: \mathbf{0} \in F_{k}(\mathbf{A}-\xi \mathbf{I})\right\} \\
\mathscr{H}_{k}(\mathbf{A}) & =\left\{\xi \in \mathbb{C}: \mathbf{0} \in \operatorname{cvx}\left[F_{k}(\mathbf{A}-\xi \mathbf{I})\right]\right\}
\end{aligned}
$$

[Nevanlinna '93, Greenbaum '02]
Equivalent definitions:

$$
\begin{aligned}
& \mathscr{G}_{k}(\mathbf{A})=\left\{\xi \in \mathbb{C}: \exists b \forall p \in \mathcal{P}_{k}|p(\xi)| \leq\|p(\mathbf{A}) b\|\right\}, \\
& \mathscr{H}_{k}(\mathbf{A})=\left\{\xi \in \mathbb{C}: \quad \forall p \in \mathcal{P}_{k}|p(\xi)| \leq\|p(\mathbf{A})\|\right\},
\end{aligned}
$$

[Greenbaum '02, T. '??]
where \mathcal{P}_{k} denotes the set of polynomials of degree k or less.
There might be a connection between convexity of $F_{k}(\mathbf{A})$ and the relation between ideal and worst-case GMRES.

Open problem

When does it hold that

$$
\underbrace{\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|}_{\psi_{k}(\mathbf{A})}=\underbrace{\min _{p \in \pi_{k}}\|p(\mathbf{A})\|}_{\varphi_{k}(\mathbf{A})} ?
$$

- In both known examples of matrices \mathbf{A} such that $\psi_{k}(\mathbf{A})<\varphi_{k}(\mathbf{A}), F_{k}(\mathbf{A})$ is not convex.

Open problem

When does it hold that

$$
\underbrace{\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|}_{\psi_{k}(\mathbf{A})}=\underbrace{\min _{p \in \pi_{k}}\|p(\mathbf{A})\|}_{\varphi_{k}(\mathbf{A})} ?
$$

- In both known examples of matrices \mathbf{A} such that $\psi_{k}(\mathbf{A})<\varphi_{k}(\mathbf{A}), F_{k}(\mathbf{A})$ is not convex.
- For $k=1, F_{k}(\mathbf{A})$ is always convex and $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})$.

Open problem

When does it hold that

$$
\underbrace{\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|}_{\psi_{k}(\mathbf{A})}=\underbrace{\min _{p \in \pi_{k}}\|p(\mathbf{A})\|}_{\varphi_{k}(\mathbf{A})} ?
$$

- In both known examples of matrices \mathbf{A} such that $\psi_{k}(\mathbf{A})<\varphi_{k}(\mathbf{A}), F_{k}(\mathbf{A})$ is not convex.
- For $k=1, F_{k}(\mathbf{A})$ is always convex and $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})$.
- Is the convexity of $F_{k}(\mathbf{A})$ sufficient?

Uniqueness

Let \mathbf{A} be a nonsingular matrix. Then the k th ideal GMRES polynomial $p_{*} \in \pi_{k}$ that solves the problem

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\|
$$

is unique.
[Greenbaum \& Trefethen '94]

Uniqueness

Let \mathbf{A} be a nonsingular matrix. Then the k th ideal GMRES polynomial $p_{*} \in \pi_{k}$ that solves the problem

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\|
$$

is unique.
[Greenbaum \& Trefethen '94]
Corrected proof and generalization can be found in
[Liesen \& T. '09, accepted to SIMAX]

Uniqueness

Let \mathbf{A} be a nonsingular matrix. Then the k th ideal GMRES polynomial $p_{*} \in \pi_{k}$ that solves the problem

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\|
$$

is unique.
[Greenbaum \& Trefethen '94]
Corrected proof and generalization can be found in
[Liesen \& T. '09, accepted to SIMAX]
What can be said about a polynomial $q_{*} \in \pi_{k}$ that solves

$$
\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\| ?
$$

Uniqueness

Let \mathbf{A} be a nonsingular matrix. Then the k th ideal GMRES polynomial $p_{*} \in \pi_{k}$ that solves the problem

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\|
$$

is unique.
[Greenbaum \& Trefethen '94]
Corrected proof and generalization can be found in
[Liesen \& T. '09, accepted to SIMAX]
What can be said about a polynomial $q_{*} \in \pi_{k}$ that solves

$$
\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\| ?
$$

- If $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})$ then q_{*} is unique and $q_{*}=p_{*}$.
- If $\psi_{k}(\mathbf{A})<\varphi_{k}(\mathbf{A}) \ldots$ uniqueness in an open problem.

Estimating the ideal GMRES approximation

How to estimate the ideal GMRES approximation

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\| ?
$$

Estimating the ideal GMRES approximation

How to estimate the ideal GMRES approximation

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\| ?
$$

Try to determine sets $\Omega \subset \mathbb{C}$ associated with \mathbf{A} such that

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\| \sim \min _{p \in \pi_{k}} \max _{z \in \Omega}|p(z)| .
$$

Estimating the ideal GMRES approximation

How to estimate the ideal GMRES approximation

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\| ?
$$

Try to determine sets $\Omega \subset \mathbb{C}$ associated with \mathbf{A} such that

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\| \sim \min _{p \in \pi_{k}} \max _{z \in \Omega}|p(z)| .
$$

- If \mathbf{A} is normal then $\Omega=L$.

Estimating the ideal GMRES approximation

How to estimate the ideal GMRES approximation

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\| ?
$$

Try to determine sets $\Omega \subset \mathbb{C}$ associated with \mathbf{A} such that

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\| \sim \min _{p \in \pi_{k}} \max _{z \in \Omega}|p(z)| .
$$

- If \mathbf{A} is normal then $\Omega=L$.
- If \mathbf{A} is nonnormal then there are several approaches:

Estimating the ideal GMRES approximation

How to estimate the ideal GMRES approximation

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\| ?
$$

Try to determine sets $\Omega \subset \mathbb{C}$ associated with \mathbf{A} such that

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\| \sim \min _{p \in \pi_{k}} \max _{z \in \Omega}|p(z)| .
$$

- If \mathbf{A} is normal then $\Omega=L$.
- If \mathbf{A} is nonnormal then there are several approaches:
- $\Omega=\varepsilon$-pseudospectrum of \mathbf{A},
[Trefethen '90]

Estimating the ideal GMRES approximation

How to estimate the ideal GMRES approximation

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\| ?
$$

Try to determine sets $\Omega \subset \mathbb{C}$ associated with \mathbf{A} such that

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\| \sim \min _{p \in \pi_{k}} \max _{z \in \Omega}|p(z)| .
$$

- If \mathbf{A} is normal then $\Omega=L$.
- If \mathbf{A} is nonnormal then there are several approaches:
- $\Omega=\varepsilon$-pseudospectrum of \mathbf{A},
[Trefethen '90]
- $\Omega=$ polynomial num. hull of A. [Nevanlinna '93, Greenbaum '02]

Polynomial numerical hull

Definition

Let A be n by n matrix. Polynomial numerical hull of degree k is a set in the complex plane defined by

$$
\mathscr{H}_{k}(\mathbf{A}) \equiv\left\{z \in \mathbb{C}:|p(z)| \leq\|p(\mathbf{A})\| \forall p \in \mathcal{P}_{k}\right\}
$$

where \mathcal{P}_{k} denotes the set of polynomials of degree k or less.

Polynomial numerical hull

Definition

Let A be n by n matrix. Polynomial numerical hull of degree k is a set in the complex plane defined by

$$
\mathscr{H}_{k}(\mathbf{A}) \equiv\left\{z \in \mathbb{C}:|p(z)| \leq\|p(\mathbf{A})\| \forall p \in \mathcal{P}_{k}\right\}
$$

where \mathcal{P}_{k} denotes the set of polynomials of degree k or less.

The set $\mathscr{H}_{k}(\mathbf{A})$ provides a lower bound

$$
\min _{p \in \pi_{k}} \max _{z \in \mathscr{H}_{k}}|p(z)| \leq \min _{p \in \pi_{k}}\|p(\mathbf{A})\| .
$$

[Greenbaum '02]

Polynomial numerical hull

Definition

Let A be n by n matrix. Polynomial numerical hull of degree k is a set in the complex plane defined by

$$
\mathscr{H}_{k}(\mathbf{A}) \equiv\left\{z \in \mathbb{C}:|p(z)| \leq\|p(\mathbf{A})\| \forall p \in \mathcal{P}_{k}\right\}
$$

where \mathcal{P}_{k} denotes the set of polynomials of degree k or less.

The set $\mathscr{H}_{k}(\mathbf{A})$ provides a lower bound

$$
\min _{p \in \pi_{k}} \max _{z \in \mathscr{H}_{k}}|p(z)| \leq \min _{p \in \pi_{k}}\|p(\mathbf{A})\| .
$$

[Greenbaum '02]
How do these sets look like for classes of nonnormal matrices?

$\mathscr{H} \mathscr{C}_{k}\left(\mathbf{J}_{\lambda}\right)$ for a Jordan block \mathbf{J}_{λ}

$\mathscr{H}_{k}\left(\mathbf{J}_{\lambda}\right)$ is a circle around λ with a radius $\varrho_{k, n}$,
$1>\varrho_{1, n}>\cdots>\varrho_{n-1, n} \geq \frac{1}{2}$,
$\varrho_{1, n}$ and $\varrho_{n-1, n}$ are known, [Faber et al. '03]

$$
\varrho_{1, n}=\cos \left(\frac{\pi}{n+1}\right) .
$$

If n is even,
$\varrho_{n-1, n}$ is the positive root of

$$
\begin{aligned}
2 \varrho^{n}+\varrho-1 & =0 \\
\varrho_{n-1, n} & \geq 1-\frac{\log (2 n)}{n} .
\end{aligned}
$$

Quality of the bound based on $\mathscr{\mathscr { C } _ { k }}\left(\mathbf{J}_{\lambda}\right)$

Jordan block $\mathbf{J}_{\lambda} \in \mathbb{R}^{n \times n}, \lambda=1$.

- For $k \leq n / 2$ it holds that

$$
\frac{1}{2} \leq \min _{p \in \pi_{k}} \max _{z \in \mathscr{H}_{k}}|p(z)| \leq \min _{p \in \pi_{k}}\|p(\mathbf{A})\| \leq 1
$$

[T. \& Liesen \& Faber '07]

Quality of the bound based on $\mathscr{\mathscr { C } _ { k }}\left(\mathbf{J}_{\lambda}\right)$

Jordan block $\mathbf{J}_{\lambda} \in \mathbb{R}^{n \times n}, \lambda=1$.

- For $k \leq n / 2$ it holds that

$$
\frac{1}{2} \leq \min _{p \in \pi_{k}} \max _{z \in \mathscr{H}_{k}}|p(z)| \leq \min _{p \in \pi_{k}}\|p(\mathbf{A})\| \leq 1
$$

- In later iterations, ideal GMRES converges slower that the lower bound predicts. For $k=n-1$ we have

$$
\frac{1}{2 n} \sim \min _{p \in \pi_{k}} \max _{z \in \mathscr{H}_{k}}|p(z)| \leq \min _{p \in \pi_{k}}\|p(\mathbf{A})\| \sim \frac{1}{1+\log (n)}
$$

[T. \& Liesen \& Faber '07]

Outline

(1) Worst-case GMRES for normal matrices

(2) Results for nonnormal matrices
(3) Cross equality for worst-case GMRES vectors

4 Results for a Jordan block

Worst-case GMRES

For a given k, there exists a right hand side b^{w} such that

$$
\left\|r_{k}^{w}\right\|=\min _{p \in \pi_{k}}\left\|p(\mathbf{A}) b^{w}\right\|=\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|
$$

Theorem
Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a nonsingular matrix. Then GMRES achieves the same worst-case behavior for \mathbf{A} and \mathbf{A}^{*} at every iteration.

- Zavorin '02 \rightarrow only for diagonalizable matrices.
- T. '?? \rightarrow for all nonsingular matrices.

Proof (for simplicity we consider everything real)

\mathbf{A} is a given matrix, b is a unit norm starting vector,

$$
\left\|r_{k}\right\|=\left\|p_{b}(\mathbf{A}) b\right\|=\min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|, \quad r_{k} \perp \mathbf{A} \mathcal{K}_{k}(\mathbf{A}, b)
$$

Proof (for simplicity we consider everything real)

\mathbf{A} is a given matrix, b is a unit norm starting vector,

$$
\left\|r_{k}\right\|=\left\|p_{b}(\mathbf{A}) b\right\|=\min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|, \quad r_{k} \perp \mathbf{A} \mathcal{K}_{k}(\mathbf{A}, b)
$$

Then, $\forall q \in \pi_{k}$ it holds that

$$
\left\langle q(\mathbf{A}) b, r_{k}\right\rangle=\left\langle b, r_{k}\right\rangle=\left\langle p_{b}(\mathbf{A}) b, r_{k}\right\rangle=\left\|r_{k}\right\|^{2} .
$$

Proof (for simplicity we consider everything real)

\mathbf{A} is a given matrix, b is a unit norm starting vector,

$$
\left\|r_{k}\right\|=\left\|p_{b}(\mathbf{A}) b\right\|=\min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|, \quad r_{k} \perp \mathbf{A} \mathcal{K}_{k}(\mathbf{A}, b)
$$

Then, $\forall q \in \pi_{k}$ it holds that

$$
\left\langle q(\mathbf{A}) b, r_{k}\right\rangle=\left\langle b, r_{k}\right\rangle=\left\langle p_{b}(\mathbf{A}) b, r_{k}\right\rangle=\left\|r_{k}\right\|^{2} .
$$

Let b^{w} be a worst-case starting vector, $c \equiv r_{k}^{w} /\left\|r_{k}^{w}\right\|$, then

$$
\psi_{k}(\mathbf{A})=\left\|r_{k}^{w}\right\|=\left\langle q(\mathbf{A}) b^{w}, c\right\rangle=\left\langle b^{w}, q\left(\mathbf{A}^{T}\right) c\right\rangle
$$

Proof (for simplicity we consider everything real)

\mathbf{A} is a given matrix, b is a unit norm starting vector,

$$
\left\|r_{k}\right\|=\left\|p_{b}(\mathbf{A}) b\right\|=\min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|, \quad r_{k} \perp \mathbf{A} \mathcal{K}_{k}(\mathbf{A}, b)
$$

Then, $\forall q \in \pi_{k}$ it holds that

$$
\left\langle q(\mathbf{A}) b, r_{k}\right\rangle=\left\langle b, r_{k}\right\rangle=\left\langle p_{b}(\mathbf{A}) b, r_{k}\right\rangle=\left\|r_{k}\right\|^{2} .
$$

Let b^{w} be a worst-case starting vector, $c \equiv r_{k}^{w} /\left\|r_{k}^{w}\right\|$, then

$$
\psi_{k}(\mathbf{A})=\left\|r_{k}^{w}\right\|=\left\langle q(\mathbf{A}) b^{w}, c\right\rangle=\left\langle b^{w}, q\left(\mathbf{A}^{T}\right) c\right\rangle
$$

Since $q \in \pi_{k}$ is arbitrary, we can also choose $q=q_{c}$,

$$
\psi_{k}(\mathbf{A})=\left\langle b^{w}, q_{c}\left(\mathbf{A}^{T}\right) c\right\rangle \leq\left\|q_{c}\left(\mathbf{A}^{T}\right) c\right\| \leq \psi_{k}\left(\mathbf{A}^{T}\right)
$$

Proof (for simplicity we consider everything real)

\mathbf{A} is a given matrix, b is a unit norm starting vector,

$$
\left\|r_{k}\right\|=\left\|p_{b}(\mathbf{A}) b\right\|=\min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|, \quad r_{k} \perp \mathbf{A} \mathcal{K}_{k}(\mathbf{A}, b)
$$

Then, $\forall q \in \pi_{k}$ it holds that

$$
\left\langle q(\mathbf{A}) b, r_{k}\right\rangle=\left\langle b, r_{k}\right\rangle=\left\langle p_{b}(\mathbf{A}) b, r_{k}\right\rangle=\left\|r_{k}\right\|^{2} .
$$

Let b^{w} be a worst-case starting vector, $c \equiv r_{k}^{w} /\left\|r_{k}^{w}\right\|$, then

$$
\psi_{k}(\mathbf{A})=\left\|r_{k}^{w}\right\|=\left\langle q(\mathbf{A}) b^{w}, c\right\rangle=\left\langle b^{w}, q\left(\mathbf{A}^{T}\right) c\right\rangle
$$

Since $q \in \pi_{k}$ is arbitrary, we can also choose $q=q_{c}$,

$$
\psi_{k}(\mathbf{A})=\left\langle b^{w}, q_{c}\left(\mathbf{A}^{T}\right) c\right\rangle \leq\left\|q_{c}\left(\mathbf{A}^{T}\right) c\right\| \leq \psi_{k}\left(\mathbf{A}^{T}\right)
$$

Switch the role of \mathbf{A} and \mathbf{A}^{T} to obtain the opposite inequality.

Another results

Since we know that $\psi_{k}(\mathbf{A})=\psi_{k}\left(\mathbf{A}^{T}\right)$ and

$$
\psi_{k}(\mathbf{A})=\left\langle b^{w}, q_{c}\left(\mathbf{A}^{T}\right) c\right\rangle \leq\left\|q_{c}\left(\mathbf{A}^{T}\right) c\right\| \leq \psi_{k}\left(\mathbf{A}^{T}\right)
$$

it holds that

$$
\left\langle b^{w}, q_{c}\left(\mathbf{A}^{T}\right) c\right\rangle=\left\|q_{c}\left(\mathbf{A}^{T}\right) c\right\| .
$$

Another results

Since we know that $\psi_{k}(\mathbf{A})=\psi_{k}\left(\mathbf{A}^{T}\right)$ and

$$
\psi_{k}(\mathbf{A})=\left\langle b^{w}, q_{c}\left(\mathbf{A}^{T}\right) c\right\rangle \leq\left\|q_{c}\left(\mathbf{A}^{T}\right) c\right\| \leq \psi_{k}\left(\mathbf{A}^{T}\right)
$$

it holds that

$$
\left\langle b^{w}, q_{c}\left(\mathbf{A}^{T}\right) c\right\rangle=\left\|q_{c}\left(\mathbf{A}^{T}\right) c\right\| .
$$

This is true iff

$$
b^{w}=\frac{q_{c}\left(\mathbf{A}^{T}\right) c}{\left\|q_{c}\left(\mathbf{A}^{T}\right) c\right\|}
$$

Cross equality for worst-case GMRES vectors

Given: $\mathbf{A} \in \mathbb{C}^{n \times n}, k$
$\operatorname{GMRES}\left(\mathbf{A}, b^{w}\right)$

It holds that

$$
\left\|s_{k}\right\|=\left\|r_{k}^{w}\right\|=\psi_{k}(\mathbf{A}), \quad b^{w}=\frac{s_{k}}{\left\|s_{k}\right\|}
$$

[Zavorin '02, T. '??]

Outline

(1) Worst-case GMRES for normal matrices

2 Results for nonnormal matrices
(3) Cross equality for worst-case GMRES vectors
(4) Results for a Jordan block

Results for a Jordan block \mathbf{J}_{λ}

Consider an $n \times n$ Jordan block $\mathbf{J}_{\lambda}, \lambda \in \mathbb{C}$,
$\varrho_{k, n} \ldots$ the radius of the polynomial numerical hull $\mathscr{H}_{k}\left(\mathbf{J}_{\lambda}\right)$

$$
\frac{1}{2} \leq \varrho_{k, n}<1
$$

Results for a Jordan block \mathbf{J}_{λ}

Consider an $n \times n$ Jordan block $\mathbf{J}_{\lambda}, \lambda \in \mathbb{C}$,
$\varrho_{k, n} \ldots$ the radius of the polynomial numerical hull $\mathscr{H}_{k}\left(\mathbf{J}_{\lambda}\right)$

$$
\frac{1}{2} \leq \varrho_{k, n}<1
$$

$\psi_{k}\left(\mathbf{J}_{\lambda}\right)=\varphi_{k}\left(\mathbf{J}_{\lambda}\right)$

- if $|\lambda| \leq \varrho_{k, n}$,
[Faber et al. '03, Faber et al. '96]
- if $|\lambda| \geq \varrho_{k, n-k}^{-1}$ and $k<n / 2$,
- in steps k such that k divides n,
- in steps $n-k$ such that k divides n and $|\lambda| \geq 1$.
[T. \& Liesen \& Faber '07]

Ideal GMRES approximation $\varphi_{k}\left(\mathbf{J}_{\lambda}\right)$

- $|\lambda| \leq \varrho_{k, n}$,

$$
\varphi_{k}\left(\mathbf{J}_{\lambda}\right)=1 .
$$

[Faber et al. '03, Faber et al. '96]

Ideal GMRES approximation $\varphi_{k}\left(\mathbf{J}_{\lambda}\right)$

- $|\lambda| \leq \varrho_{k, n}$,

$$
\varphi_{k}\left(\mathbf{J}_{\lambda}\right)=1
$$

[Faber et al. '03, Faber et al. '96]

- $|\lambda| \geq \varrho_{k, n-k}^{-1}$ and $k<n / 2$,

$$
\varphi_{k}\left(\mathbf{J}_{\lambda}\right)=|\lambda|^{-k}
$$

Ideal GMRES approximation $\varphi_{k}\left(\mathbf{J}_{\lambda}\right)$

- $|\lambda| \leq \varrho_{k, n}$,

$$
\varphi_{k}\left(\mathbf{J}_{\lambda}\right)=1
$$

[Faber et al. '03, Faber et al. '96]

- $|\lambda| \geq \varrho_{k, n-k}^{-1}$ and $k<n / 2$,

$$
\varphi_{k}\left(\mathbf{J}_{\lambda}\right)=|\lambda|^{-k}
$$

- steps $n-k$ such that k divides n and $|\lambda| \geq 1$,

$$
\varphi_{n-k}\left(\mathbf{J}_{\lambda}\right)=\frac{1}{\lambda^{n-k}}\left[\sum_{i=0}^{n / k-1} \lambda^{-2 k i} 4^{-2 i}\binom{2 i}{i}^{2}\right]^{-1}
$$

[T. \& Liesen \& Faber '07]

Radius of polynomial numerical hull for J_{λ}

Theorem
Let d be the greatest common divisor of n and k and define

$$
\ell=\frac{k}{d}, \quad m=\frac{n}{d}
$$

Then

$$
\varrho_{k, n}=\varrho_{\ell, m}^{1 / d}
$$

Radius of polynomial numerical hull for J_{λ}

Theorem
Let d be the greatest common divisor of n and k and define

$$
\ell=\frac{k}{d}, \quad m=\frac{n}{d} .
$$

Then

$$
\varrho_{k, n}=\varrho_{\ell, m}^{1 / d}
$$

Consider k such that k divides n. Then

$$
\varrho_{k, n}=\left[\cos \left(\frac{\pi}{m+1}\right)\right]^{\frac{1}{k}}, \quad \varrho_{n-k, n}=\varrho_{m-1, m}^{\frac{1}{k}}
$$

[T. \& Liesen \& Faber '07]

Conclusions

(1) Ideal and worst-case GMRES for nonnormal matrices are not well understood.

Conclusions

(1) Ideal and worst-case GMRES for nonnormal matrices are not well understood.
(2) There might be a connection between the convexity of the generalized field of values and the relation between ideal and worst-case GMRES.

Conclusions

(1) Ideal and worst-case GMRES for nonnormal matrices are not well understood.
(2) There might be a connection between the convexity of the generalized field of values and the relation between ideal and worst-case GMRES.
(3) Worst-case GMRES achieves the same convergence behavior for \mathbf{A} and \mathbf{A}^{*}. Worst-case GMRES vectors satisfy the cross equality.

Conclusions

(1) Ideal and worst-case GMRES for nonnormal matrices are not well understood.
(2) There might be a connection between the convexity of the generalized field of values and the relation between ideal and worst-case GMRES.
(3) Worst-case GMRES achieves the same convergence behavior for \mathbf{A} and \mathbf{A}^{*}. Worst-case GMRES vectors satisfy the cross equality.
(9) Based on numerical observation and theoretical results we conjecture that ideal GMRES $=$ worst-case GMRES for a Jordan block.

References

- J. Liesen and P. TichÝ, [On best approximations of polynomials in matrices in the matrix 2-norm, accepted SIMAX, 2009.]
- P. Tichý, J. Liesen, and V. Faber, [On worst-case GMRES, ideal GMRES, and the polynomial numerical hull of a Jordan block, ETNA, 26 (2007), pp. 453-473.]
- J. Liesen and P. TichÝ, [The worst-case GMRES for normal matrices, BIT Num. Math., 44 (2004), pp. 79-98.]
- V. Faber, A. Greenbaum, and D. E. Marshall, [The polynomial numerical hulls of Jordan blocks and related matrices, LAA, 374 (2003), pp. 231-246.]
- A. Greenbaum, [Generalizations of the field of values useful in the study of polynomial functions of a matrix, LAA., 347 (2002), pp. 233-249.]
- K. C. Toh, [GMRES vs. ideal GMRES, SIMAX, 18 (1997), pp. 30-36.]
- V. Faber, W. Joubert, E. Knill, and T. Manteuffel, [Minimal residual method stronger than polynomial preconditioning, SIMAX, 17 (1996), pp. 707-729.]

Thank you for your attention!

More details can be found at

http://www.cs.cas.cz/tichy
http://www.math.tu-berlin.de/~liesen

